20 research outputs found

    Cubical Syntax for Reflection-Free Extensional Equality

    Get PDF
    We contribute XTT, a cubical reconstruction of Observational Type Theory which extends Martin-L\"of's intensional type theory with a dependent equality type that enjoys function extensionality and a judgmental version of the unicity of identity types principle (UIP): any two elements of the same equality type are judgmentally equal. Moreover, we conjecture that the typing relation can be decided in a practical way. In this paper, we establish an algebraic canonicity theorem using a novel cubical extension (independently proposed by Awodey) of the logical families or categorical gluing argument inspired by Coquand and Shulman: every closed element of boolean type is derivably equal to either 'true' or 'false'.Comment: Extended version; International Conference on Formal Structures for Computation and Deduction (FSCD), 201

    Multimodal Dependent Type Theory

    Get PDF
    We introduce MTT, a dependent type theory which supports multiple modalities. MTT is parametrized by a mode theory which specifies a collection of modes, modalities, and transformations between them. We show that different choices of mode theory allow us to use the same type theory to compute and reason in many modal situations, including guarded recursion, axiomatic cohesion, and parametric quantification. We reproduce examples from prior work in guarded recursion and axiomatic cohesion, thereby demonstrating that MTT constitutes a simple and usable syntax whose instantiations intuitively correspond to previous handcrafted modal type theories. In some cases, instantiating MTT to a particular situation unearths a previously unknown type theory that improves upon prior systems. Finally, we investigate the metatheory of MTT. We prove the consistency of MTT and establish canonicity through an extension of recent type-theoretic gluing techniques. These results hold irrespective of the choice of mode theory, and thus apply to a wide variety of modal situations

    Cartesian Cubical Computational Type Theory: Constructive Reasoning with Paths and Equalities

    Get PDF
    We present a dependent type theory organized around a Cartesian notion of cubes (with faces, degeneracies, and diagonals), supporting both fibrant and non-fibrant types. The fibrant fragment validates Voevodsky\u27s univalence axiom and includes a circle type, while the non-fibrant fragment includes exact (strict) equality types satisfying equality reflection. Our type theory is defined by a semantics in cubical partial equivalence relations, and is the first two-level type theory to satisfy the canonicity property: all closed terms of boolean type evaluate to either true or false
    corecore